NPP equipment fault detection methods
نویسندگان
چکیده
منابع مشابه
islanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولAutomated Fault Detection and Diagnostics for Vapor Compression Cooling Equipment
Automated fault detection and diagnostic (FDD) systems have the potential to reduce equipment downtime, service costs, and utility costs. However, very few commercial products exist and the ones that do exist are very specialized. This may be surprising to some, considering that FDD is very well developed for other applications such as for nuclear power plants, aircraft, chemical process plants...
متن کاملFault Detection and Fault Tolerance Methods for Robotics by Monica
Fault tolerance is increasingly important in modern autonomous or industrial robots. The ability to detect and tolerate failures allows robots to e ectively cope with internal failures and continue performing designated tasks without the need for immediate human intervention. To support these fault tolerant capabilities, methods of detecting and isolating failures must be perfected. This thesis...
متن کاملModel-based methods for textile fault detection
Addressing the problem of automatic fault detection in woven and dyed fabric, we discuss a number of new statistical model-based methods and relate them to a first stage of point/local detection and a second stage of extended pattern detection. One model-based method defines a maximum likelihood binarization of the image. In another model-based method, we describe a discrete Fourier transform-b...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika
سال: 2019
ISSN: 0204-3327
DOI: 10.26583/npe.2019.4.01